Spatially non-uniform ground state and quantized vortices in a two-component Bose-Einstein condensate of magnons
نویسندگان
چکیده
A gas of magnons in magnetic films differs from all other known systems demonstrating Bose-Einstein condensation (BEC), since it possesses two energetically degenerate lowest-energy quantum states with non-zero wave vectors ±k(BEC). Therefore, BEC in this system results in a spontaneously formed two-component Bose-Einstein condensate described by a linear combination of two spatially non-uniform wave-functions ∝exp(±ik(BEC)z), while condensates found in other physical systems are characterized by spatially uniform wave-functions. Here we report a study of BEC of magnons with sub-micrometer spatial resolution. We experimentally confirm the existence of the two wave-functions and show that their interference results in a non-uniform ground state of the condensate with the density oscillating in space. Additionally, we observe stable topological defects in the condensate. By comparing the experimental results with predictions of a theoretical model based on the Ginzburg-Landau equation, we identify these defects as quantized vortices.
منابع مشابه
Dissipative solitons and vortices in polariton Bose-Einstein condensates
We examine spatial localization and dynamical stability of Bose-Einstein condensates of exciton polaritons in microcavities under the condition of off-resonant spatially inhomogeneous optical pumping both with and without a harmonic trapping potential. We employ the open-dissipative Gross-Pitaevskii model for describing an incoherently pumped polariton condensate coupled to an exciton reservoir...
متن کاملThe Bose-Einstein Condensate- a Superfluid Gas of Coherent Atoms
Following the theoretical suggestion [2], we have demonstrated a new method to create vortices in Bose-Einstein condensates. Vortices were imprinted into the condensate wavefunction using topological phases. Sodium condensates held in an Ioffe-Pritchard magnetic trap were transformed from a non-rotating state to one with quantized circulation by adiabatically inverting the magnetic bias field a...
متن کاملDynamical thermalization and vortex formation in stirred two-dimensional Bose-Einstein condensates
We present a quantum-mechanical treatment of the mechanical stirring of Bose-Einstein condensates using classical field techniques. In our approach the condensate and excited modes are described using a Hamiltonian classical field method in which the atom number and rotating frame energy are strictly conserved. We simulate a T=0 quasi-two-dimensional condensate perturbed by a rotating anisotrop...
متن کاملSplitting of a doubly quantized vortex through intertwining in Bose-Einstein condensates
The stability of doubly quantized vortices in dilute Bose-Einstein condensates of Na is examined at zero temperature. The eigenmode spectrum of the Bogoliubov equations for a harmonically trapped cigar-shaped condensate is computed and it is found that the doubly quantized vortex is spectrally unstable towards division into two singly quantized vortices. By numerically solving the full three-di...
متن کاملPinning of vortices in a Bose-Einstein condensate by an optical lattice.
We consider the ground state of vortices in a Bose-Einstein condensate. We show that turning on a weak optical periodic potential leads to a transition from the triangular Abrikosov vortex lattice to phases where the vortices are pinned by the optical potential. We discuss the phase diagram of the system for a two-dimensional optical periodic potential with one vortex per optical lattice cell. ...
متن کامل