Spatially non-uniform ground state and quantized vortices in a two-component Bose-Einstein condensate of magnons

نویسندگان

  • P. Nowik-Boltyk
  • O. Dzyapko
  • V. E. Demidov
  • N. G. Berloff
  • S. O. Demokritov
چکیده

A gas of magnons in magnetic films differs from all other known systems demonstrating Bose-Einstein condensation (BEC), since it possesses two energetically degenerate lowest-energy quantum states with non-zero wave vectors ±k(BEC). Therefore, BEC in this system results in a spontaneously formed two-component Bose-Einstein condensate described by a linear combination of two spatially non-uniform wave-functions ∝exp(±ik(BEC)z), while condensates found in other physical systems are characterized by spatially uniform wave-functions. Here we report a study of BEC of magnons with sub-micrometer spatial resolution. We experimentally confirm the existence of the two wave-functions and show that their interference results in a non-uniform ground state of the condensate with the density oscillating in space. Additionally, we observe stable topological defects in the condensate. By comparing the experimental results with predictions of a theoretical model based on the Ginzburg-Landau equation, we identify these defects as quantized vortices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissipative solitons and vortices in polariton Bose-Einstein condensates

We examine spatial localization and dynamical stability of Bose-Einstein condensates of exciton polaritons in microcavities under the condition of off-resonant spatially inhomogeneous optical pumping both with and without a harmonic trapping potential. We employ the open-dissipative Gross-Pitaevskii model for describing an incoherently pumped polariton condensate coupled to an exciton reservoir...

متن کامل

The Bose-Einstein Condensate- a Superfluid Gas of Coherent Atoms

Following the theoretical suggestion [2], we have demonstrated a new method to create vortices in Bose-Einstein condensates. Vortices were imprinted into the condensate wavefunction using topological phases. Sodium condensates held in an Ioffe-Pritchard magnetic trap were transformed from a non-rotating state to one with quantized circulation by adiabatically inverting the magnetic bias field a...

متن کامل

Dynamical thermalization and vortex formation in stirred two-dimensional Bose-Einstein condensates

We present a quantum-mechanical treatment of the mechanical stirring of Bose-Einstein condensates using classical field techniques. In our approach the condensate and excited modes are described using a Hamiltonian classical field method in which the atom number and rotating frame energy are strictly conserved. We simulate a T=0 quasi-two-dimensional condensate perturbed by a rotating anisotrop...

متن کامل

Splitting of a doubly quantized vortex through intertwining in Bose-Einstein condensates

The stability of doubly quantized vortices in dilute Bose-Einstein condensates of Na is examined at zero temperature. The eigenmode spectrum of the Bogoliubov equations for a harmonically trapped cigar-shaped condensate is computed and it is found that the doubly quantized vortex is spectrally unstable towards division into two singly quantized vortices. By numerically solving the full three-di...

متن کامل

Pinning of vortices in a Bose-Einstein condensate by an optical lattice.

We consider the ground state of vortices in a Bose-Einstein condensate. We show that turning on a weak optical periodic potential leads to a transition from the triangular Abrikosov vortex lattice to phases where the vortices are pinned by the optical potential. We discuss the phase diagram of the system for a two-dimensional optical periodic potential with one vortex per optical lattice cell. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012